Package 'sgmodel'

Title: Solves a Generic Stochastic Growth Model with a Representative Agent
Description: It computes the solutions to a generic stochastic growth model for a given set of user supplied parameters. It includes the solutions to the model, plots of the solution, a summary of the features of the model, a function that covers different types of consumption preferences, and a function that computes the moments of a Markov process. Merton, Robert C (1971) <doi:10.1016/0022-0531(71)90038-X>, Tauchen, George (1986) <doi:10.1016/0165-1765(86)90168-0>, Wickham, Hadley (2009, ISBN:978-0-387-98140-6 ).
Authors: Thomas Vigie <[email protected]>
Maintainer: Thomas Vigie <[email protected]>
License: GPL-3
Version: 0.1.1
Built: 2025-03-05 03:31:50 UTC
Source: https://github.com/thomasvigie/sgmodel-v-0.1.1

Help Index


Markovmoments

Description

The function Markovmoments computes the expectation, variance, autocovariance and autocorrelation of a Markov process.

Usage

Markovmoments(states, ptm, ...)

Arguments

states

A numerical vector with the states of the Markov process.

ptm

The probability transition matrix, a square matrix of dimension length(states) whose columns sum to one.

...

Additional arguments.

Value

It returns a list containing:

Expectation

The mean of the process.

Variance

The variance of the process.

Autocovariance

The autocovariance of the process.

Autocorrelation

The autocorrelation of the process.

Stationary distribution

The stationary distribution of the process, used for the computation of the moments.

Examples

a <- c(-1, 1)
A <- matrix(c(0.5, 0.6,
              0.5, 0.4), 2, 2)
Markovmoments(a, A)

sgmodel: A package for computating the solutions to a generic stochastic growth model.

Description

The sgmodel package provides three important functions: sgmod, util and Markovmoments.

The sgmodel function

The sgmodel function solves a standard stochastic growth model using value function iteration. The stochastic component follows an autoregressive process of order one, and is discretized by a finite state Markov process.

The util function

It computes values for various uility functions encountered in economic theory.

The Markovmoments function

It computes the four moments of a finite state Markov chain: expectation, variance, autocovariance and autocorrelation.


plot_sgmod

Description

The function plot_sgmod returns a plot of the Savings value of a sgmodel object on the Capital grid value.

Usage

plot_sgmod(x, ...)

Arguments

x

A sgmod object.

...

Additional arguments.

Value

It returns a plot using ggplot that graphs the Savings decisions from the sgmodel object on the Capital grid. The plot shows as many facets as length(Z) where Z is the vector of states of the TFP process.

References

Wickham H (2009), ggplot2: Elegant Graphics for Data Analysis. URL http://ggplot2.org

Examples

model <- sgmodel( grid = 100, rho = 0.2, sigma = 0.02)
plot_sgmod(model)
grid <- 200
utiltype <- "CRRA"
utilparam <- 4
A <- 1
depre <- 0.03
discount <- 0.95
prod <- 0.3
states <- 5
m <- 2
rho <- 0.2
sigma <- 0.02
model <- sgmodel(grid, utiltype, utilparam, A, depre, discount, prod, states, m, rho, sigma)
plot_sgmod(model)

print.summary_sgmod

Description

The function print.summary_sgmod prints a summary for a sgmodel object.

Usage

## S3 method for class 'summary_sgmod'
print(x, ...)

Arguments

x

An object of class sgmod.

...

Additional arguments.

Value

It returns a list with the model parameters. It includes:

Utility function

The type of utility function. See the details of util for the available types

Capital share

The exponent on capital in the Cobb-Douglas production function.

Discount factor

The discount factor used in the model.

Depreciation

The depreciation rate of capital used in the model.

Rho

Autocorrelation of the TFP AR(1) process.

Sigma

Standard deviation of the white noise in the TFP process.

Number of TFP states

Number of states of the TFP process.

Examples

grid <- 200
utiltype <- "CRRA"
utilparam <- 4
A <- 1
depre <- 0.03
discount <- 0.95
prod <- 0.3
states <- 3
m <- 4
rho <- 0.2
sigma <- 0.02
model <- sgmodel(grid, utiltype, utilparam, A, depre, discount, prod, states, m, rho, sigma)
summary_sgmod(model)

Sgmodel

Description

The function sgmodel computes the solutions to a generic stochastic growth model after discretizing the distribution of the stochastic element.

Usage

sgmodel(grid, utiltype, utilparam, A, depre, discount, prod, states, m, rho,
  sigma, ...)

Arguments

grid

A numerical value, the number of capital grid points to consider for k (t). Default value set to 1000.

utiltype

The type of preference for the util function. Can be "log", "CRRA", "CARA", "Cobb-Douglas", "CES". See description of util for details. Default type set to "log".

utilparam

Numerical value, preference parameter for the util function. See description of util for details. Default set to 1.

A

Numerical value, preference parameter for the util function. See description of util for details. Default set to 1.

depre

Numerical value for the depreciation parameter. Must be between 0 and 1. Default value set to 1.

discount

Numerical value for the discount factor. Must be (strictly) between 0 and 1. Default value set to 0.95.

prod

Numerical value for the Cobb-Douglas production function. Must be (strictly) between 0 and 1. Default value set to 0.3.

states

umerical value for the number of states of the Markov process approximating the TFP process. Default value set to 2.

m

Numerical value for the Rtauchen function. See description of Rtauchen for details. Default value set to 3.

rho

Autocorrelation of the TFP AR(1) process, used to approximate the process with a Markov process.

sigma

Standard deviation of the white noise in the TFP process, used to approximate the process with a Markov process.

...

Additional arguments.

Value

The function returns a list containing:

Capital grid

Vector of values for capital.

Savings

Vector of size (grid x States) indicating which coordinates of the capital grid are the optimal savings decision.

Consumption

Vector of size (grid x States) indicating the optimal consumption decisions using the optimal savings decision, and given the capital level of the corresponding coordinate of Capital grid.

Z

States of the TFP process.

PTM

The probability transition matrix of the process.

Production parameter

The exponent on capital in the Cobb-Douglas production function.

Utility type

The type of utility function. See the details of "util" for the available types

Discount factor

The discount factor used in the model.

Depreciation

The depreciation rate of capital used in the model.

Rho

Autocorrelation of the TFP AR(1) process.

Sigma

Standard deviation of the white noise in the TFP process.

References

Tauchen G (1986), Finite state markov-chain approximations to univariate and vector autoregressions. Economics letters, 20(2), 177–181.

Merton R. C (1971), Optimum consumption and portfolio rules in a continuous-time model. Journal of Economic Theory, 3(4), 373–413. URL http://www.sciencedirect.com/science/article/pii/002205317190038X

Examples

model <- sgmodel(grid= 100, rho = 0.2, sigma = 0.02)

grid <- 200
utiltype <- "CRRA"
utilparam <- 4
A <- 1
depre <- 0.03
discount <- 0.95
prod <- 0.3
states <- 5
m <- 10
rho <- 0.2
sigma <- 0.02
model <- sgmodel(grid, utiltype, utilparam, A, depre, discount, prod, states, m, rho, sigma)

summary_sgmod

Description

The function summary_sgmod prints a summary for results of the sgmodel function.

Usage

summary_sgmod(object, ...)

Arguments

object

A sgmodel object.

...

Additional arguments.

Value

It returns a list with the model parameters. It includes:

Utility function

The type of utility function. See the details of util for the available types

Capital share

The exponent on capital in the Cobb-Douglas production function.

Discount factor

The discount factor used in the model.

Depreciation

The depreciation rate of capital used in the model.

Rho

Autocorrelation of the TFP AR(1) process.

Sigma

Standard deviation of the white noise in the TFP process.

Number of TFP states

Number of states of the TFP process.

Examples

grid <- 200
utiltype <- "CRRA"
utilparam <- 4
A <- 1
depre <- 0.03
discount <- 0.95
prod <- 0.3
states <- 3
m <- 3
rho <- 0.2
sigma <- 0.02
model <- sgmodel(grid, utiltype, utilparam, A, depre, discount, prod, states, m, rho, sigma)
summary_sgmod(model)

Util

Description

The function util computes values for different types of utility functions and different parameters. See sgmodel_vignette for detailed functional forms.

Usage

util(x, A, prefparam, type = c("log", "CRRA", "CARA", "Cobb-Douglas", "CES"),
  ngoods, ...)

Arguments

x

A numeric vector of length ngoods with values to compute utility for.

A

A numerical value that will premultiply the utility function. Default value set to 1.

prefparam

A numerical value, the preference parameter applied to the utility function depending on type.

type

A character for the Type of utility function. Can be "log", "CRRA", "CARA", "Cobb-Douglas", "CES". Default type set to "log".

ngoods

Numerical value for the number of goods to consider. Default value set to 1.

...

Additional arguments.

Value

A numerical value, the utility function evaluated at the arguments.

References

Merton R. C (1971), Optimum consumption and portfolio rules in a continuous-time model. Journal of Economic Theory, 3(4), 373–413. URL http://www.sciencedirect.com/science/article/pii/002205317190038X.

Examples

x <- c(exp(1), exp(1))
A <- 2
type <- "log"
ngoods <- 2
util(x = x, A = A, type = type, ngoods = ngoods)